Светодиодных устройств принцип работы

Устройство и принцип работы светодиодной лампы

Светодиодная лампа — это источник света, в основе которого светодиоды. Светодиоды представляют собой особые полупроводниковые приборы, которые созданы специально для получения света при прохождении через них электрического тока.

В отличие от ламп накаливания, светодиодные лампы имеют более высокий КПД. И в то время как лампа накаливания преобразует в свет порядка 5-10% подводимой к ней электрической энергии, светодиодная лампа имеет КПД около 50%. Принципиально светодиоды в 10 раз превосходят лампы накаливания по световой отдаче.

Для своего питания светодиоды принципиально требуют низкого постоянного напряжения в районе от 2 до 4 вольт на один светодиод. Если речь идет о светодиодной сборке, какие всегда и применяются в светодиодных лампах, то цепочкам светодиодов необходимо обычно более 12 вольт.

Это значит, что в любом случае напряжение сети 220 вольт должно быть сначала преобразовано, затем понижено и стабилизировано. Тогда светодиоды внутри лампы будут питаться правильно, не перегреются и не выйдут из строя раньше времени. Обычный срок службы качественной светодиодной лампы, заявляемый производителем — 50000 — 100000 часов.

Как законченное изделие, светодиодная лампа всегда включает в себя минимум четыре составные части: рассеиватель, сборку со светодиодами на плате, драйвер — преобразователь и цоколь. Цоколь здесь как у обычной лампы, под стандартный патрон E27 или Е14. Кроме цоколя, схожесть с лампой накаливания заканчивается на похожести формы рассеивателя.

Дальше идут различия. Да и рассеиватель здесь пластиковый а вовсе не стеклянный, ведь герметичность светодиодной сборке не нужна, а температуру до 100 градусов пластик выдержит без проблем. Так что отсутствие стекла вполне оправдано и пластик применяется целесообразно. К тому же он не так хрупок как стекло.

В основании лампы, между цоколем и рассеивателем, находятся светодиодная сборка и драйвер, который еще называют электронным балластом. Драйвер предназначен для преобразования напряжения сети в постоянное низкое напряжение, которое подходит для питания светодиодной сборки.

Есть дешевые лампы где драйвер практически отсутствует, а его место занимает гасящий конденсатор с выпрямителем. Это очень не надежное решение, поскольку такая упрощенная схема не защищает светодиоды от скачков напряжения в сети, а для светодиодов важно чтобы напряжение их питания (а значит и ток) было стабилизированным.

Более качественные светодиодные лампы имеют внутри более надежные драйвера. Полноценный драйвер на микросхеме, представляющий собой стабилизированный понижающий импульсный преобразователь — это лучшее решение для светодиодов, так как стабилизация выхода предполагает возможность скачков напряжения на входе, которые будут нивелированы схемой и не причинят вреда светодиодам.

Стабилизация по току и напряжению для светодиодов всегда достигается применением специализированной микросхемы драйвера с плавным пуском. В этом случае светодиоды прослужат долго и надежно, так как их рабочий режим всегда будет находиться в безопасных рамках.

Светодиодная сборка — сердце светодиодной лампы. Обычно применяются SMD-светодиоды различных типоразмеров. Из светодиодов собираются последовательные цепочки, которые соединяются друг с другом параллельно, и в таком виде впаиваются на плату. В зависимости от размера и мощности лампы, в ней может быть установлено например две параллельные цепочки по 14 последовательно соединенных SMD-светодиодов на общую мощность 9 Вт.

Источник: http://electricalschool.info/main/osnovy/2214-ustroystvo-i-princip-raboty-svetodiodnoy-lampy.html

Как работает светодиод: принцип работы, устройство и особенности

Многие потребители хотят больше узнать об устройстве светодиодов, принципе работы этих электрических приборов, а также их технологических особенностях. Это связано с популяризацией LED-освещения в целом. Такие элементы представляют собой полупроводниковые изделия с электронно-дырочным переходом, позволяющим формировать оптическое излучение.

Как появилась специфическая светотехника?

Прежде чем рассмотреть принцип работы светодиодов, предлагается изучить информацию о том, каким образом они были созданы. Самое первое сообщение о возможности излучения света посредством твердотельного диода принадлежит одному британскому экспериментатору. Он сделал его еще в 1907 году, когда описал процесс электролюминесценции.

Эксперименты повторно проводились и в российской лаборатории, но тогда им не придали особого значения. В 1961 году первая светодиодная технология была запатентована сотрудниками американской компании. С тех пор процессы разработки совершенствовались. И через какое-то время удалось выпустить элемент высокой яркости для использования в телекоммуникационной сфере.

Об основных физических свойствах

Чтобы понять принцип работы светодиода, необходимо понимать, что каждый элемент – это полупроводниковый диод, преобразовывающий электроэнергию непосредственно в световое излучение. Когда по нему проходит прямой ток, осуществляется перенос электронов в конкретную область. В процессе перемещения происходит переход на другой энергетический уровень с выделением большого количества светового излучения.

Читайте так же:  Как уволиться по соглашению сторон без отработки

Чтобы получить различные цветовые эффекты, в полупроводниковый материал внедряются активирующие вещества. Чаще всего применяется монохроматическое излучение. При таком варианте для каждого диода используется определенная длина волны. Цветовая гамма свечения может быть управляемой.

Наиболее важные особенности

Рассматривая подробное устройство и принцип работы светодиода, нельзя не отметить некоторые особенности. Излучение приборов находится в прямой зависимости от угла направленности, который зависит от конструкции. Определенное влияние на интенсивность излучения оказывают:

  • материал, применяющийся непосредственно для защиты кристалла;
  • установленная линза.

Полупроводниковый прибор способен выделять не только узконаправленный, но и рассеянный свет. Температурный режим внешней среды может оказывать влияние на свойства светодиодов. От него зависит их яркость. При повышении температуры свечение становится тусклее, а при понижении – ярче. В связи с этим сфера эксплуатации имеет особое значение.

Высокие требования предъявляются к продукции, предназначенной для наружного применения. Она должна исправно функционировать при значительных колебаниях температур. Яркость света в ходе эксплуатации не должна заметно изменяться. Современные решения позволяют обеспечить нормальное свечение, независимо от температуры окружающей среды.

Принцип работы светодиода основывается на высокой скорости действия. Излучение появляется в течение нескольких секунд после прямого воздействия электрического тока непосредственно на полупроводник. Изготавливаемые приборы могут иметь технологические отличия, от которых будет зависеть сфера применения.

Светодиоды типа DIP

Полупроводниковые элементы данной категории относятся к слаботочным изделиям, поэтому они в основном применяются для дополнительной подсветки. Обычно они устанавливаются в качестве индикаторов или основных источников в гирляндах. С появлением более совершенных технологий их производство существенно сократилось.

Принцип работы светодиода малой мощности сравнительно прост. В качестве основы выступает корпус, имеющий цилиндрическую форму. Он изготавливается из эпоксидной смолы. Во внутренней части находятся специальные выводы, вставленные в печатную плату. Закругленный цилиндр позволяет создать направленный световой поток.

Излучающий элемент в виде кристалла размещен на катоде, который напоминает небольшой флажок. Он при помощи сверхтонкого провода соединен с анодом. Встречаются изделия сразу с двумя или тремя кристаллами, имеющими разные цвета. При необходимости в корпус внедряется управляющий чип, необходимый для контроля над свечением.

Для наращивания уровня светового потока в таких светодиодах начали делать четыре вывода вместо двух. Однако при таком варианте нагрев кристалла значительно увеличился, что привело к ограничению возможной сферы применения.

Светодиоды типа SMD

Такие элементы имеют более широкое назначение, что связано с основными характеристиками. Принцип работы светодиодов данного типа позволяет организовывать освещение различных форматов. Полупроводниковые приборы с фиксированной печатной платой имеют компактные габариты, благодаря чему они могут использоваться даже в самых маленьких светильниках.

Базовая часть корпуса, на которую фиксируется кристалл, обладает высокой теплопроводностью, поэтому отвод тепла производится эффективно. Обычно между линзой и основным элементом укладывается слой люминофора, предоставляющий возможность нейтрализовать ультрафиолет, а также задать определенную цветовую температуру. В изделиях с рассеянным излучением линза не устанавливается. Сам элемент по форме напоминает параллелепипед.

Светодиоды типа COB

Подобные элементы начали использоваться для лампочек и фонарей с мощным светодиодом. Принцип работы изделий остается тем же, но к алюминиевой основе в данном случае крепятся десятки кристаллов при помощи диэлектрического клеевого состава. Полученная матрица обрабатывается одним слоем люминофора, в результате чего образуется световой источник с равномерным распределением основного потока.

Одной из разновидностей технологии является вариант с распределением большого количества кристаллов по стеклянной поверхности. По этой схеме изготавливаются филаментные лампы, у которых в качестве базового источника выступает центральный стержень из стекла, покрытый мелкими светодиодами и обработанный люминофором.

Технология RGB

Принцип работы RGB-светодиода основывается на оптическом эффекте, позволяющем получить разнообразные цветовые оттенки в результате смешения трех основных компонентов палитры. На одной матрице установлены сразу три кристалла. Для адаптации к различным условиям существует несколько модификаций изделий. Они изготавливаются с общим катодом или анодом, а иногда и без таковых (с шестью основными выводами).

Чаще всего световая технология используется для оформления рекламных щитов, декорирования строений, обрамления мостов, памятников архитектуры и других конструкций. Принцип работы многоцветного светодиода идентичен. Однако конструктивные особенности увеличивают конечную стоимость изделий и усложняют схему подсоединения к электрической сети.

Основные технические характеристики

Существует несколько параметров, характеризующих светодиоды.

  1. Яркость выражается в единицах силы света. Она пропорциональна величине проходящего через полупроводниковый элемент электрического тока. С увеличением напряжения повышается уровень яркости.
  2. Сила тока может быть пульсирующей или постоянной. Она может колебаться в широком диапазоне. Индикаторные приборы могут иметь силу тока всего 20 мА, а одноваттные аналоги – 300-400 мА.
  3. Длина волны оказывает влияние на цветовую гамму. Ее измерения производятся в нанометрах. Границы волны сопоставляются с базовыми компонентами палитры необходимым образом.
Читайте так же:  Виды погашения задолженности

Цветовая гамма испускаемого излучения меняется при введении в полупроводниковый материал химически активных веществ.

Принцип работы драйвера для светодиодов

Для получения стабилизированного тока применяется специальное устройство, которое выбирается с учетом следующих параметров:

  • определенной мощности;
  • напряжения непосредственно на выходе;
  • номинального тока.

Устанавливаемые драйверы могут быть линейными или импульсными. Первые из них призваны обеспечивать плавную стабилизацию электрического тока при изменчивом напряжении на входе. Импульсные приборы формируют в выходном канале высокочастотные толчки. Они отличаются высоким коэффициентом полезного действия.

Существуют еще диммируемые драйверы, предоставляющие возможность настраивать яркость свечения светодиодов. Днем интенсивность излучения можно несколько уменьшить, благодаря чему удастся экономить ресурс полупроводниковых изделий и электрическую энергию.

Интересующие вопросы

Теперь принцип работы светодиодов стал понятен, однако многие пользователи задают различные вопросы по этой теме.

  1. Какие параметры влияют на срок службы полупроводникового прибора? Есть утверждение, что светодиоды долговечны, но это не совсем так. При высокой силе тока в процессе эксплуатации увеличивается температура, поэтому более мощные устройства быстрее выходят из строя.
  2. Ухудшается ли цветовая передача светодиодов со временем? При длительной эксплуатации приборов происходит определенное изменение оттенка, но в настоящее время не существует каких-либо стандартов, позволяющих выразить это в количественном отношении.
  3. Не являются ли устройства вредными для человеческого глаза? Какие-либо сведения о негативном воздействии полупроводниковых элементов на данный момент времени отсутствуют.
  4. Почему необходимо стабилизировать электрический ток, проходящий через LED-устройство? Даже небольшие изменения напряжения способны привести к колебаниям яркости.
  5. Каким образом можно получить белый свет? Есть три основных варианта. Первый из них предполагает смешение компонентов палитры с применением технологии RGB. Второй вариант подразумевает нанесение три люминофора непосредственно на поверхность полупроводникового прибора, излучающего поток света в ультрафиолетовом диапазоне. В третьем способе люминофор наносится на голубой элемент.

В качестве заключения

В рамках статьи удалось подробно рассмотреть принцип работы светодиода. Для «чайников» (людей, не разбирающихся в современных технологиях LED) она станет, пожалуй, ценным пособием. В ней собрана наиболее полная информация, касающаяся устройства и функционирования современных осветительных систем, пользующихся высокой популярностью.

Источник: http://www.syl.ru/article/363079/kak-rabotaet-svetodiod-printsip-rabotyi-ustroystvo-i-osobennosti

Устройство и принцип работы диода

Диод — простейший полупроводниковый прибор, который можно встретить сегодня на печатной плате любого электронного устройства. В зависимости от внутренней структуры и технических характеристик, диоды классифицируются на нескольких видов: универсальные, выпрямительные, импульсные, стабилитроны, туннельные диоды и варикапы. Они применяются для выпрямления, ограничения напряжения, детектирования, модуляции и т. д. — в зависимости от назначения устройства, в котором применяются.

Основа диода — p-n-переход, сформированный полупроводниковыми материалами с двумя разными типами проводимости. К кристаллу диода присоединены два вывода, называемые катод (минусовой электрод) и анод (плюсовой электрод). На стороне анода находится область полупроводника p-типа, а на стороне катода — область n-типа. Данное устройство диода обеспечивает ему уникальное свойство — он проводит ток лишь в одном (прямом) направлении, от анода — к катоду. В обратном направлении обычный исправный диод ток не проводит.

В области анода (p-типа), основными носителями заряда являются положительно заряженные дырки, а в области катода (n-типа) — отрицательно заряженные электроны. Выводы диода представляют собой контактные металлические поверхности к которым и припаяны выводы.

Когда диод проводит ток в прямом направлении, это значит что он находится в открытом состоянии. Если ток через p-n-переход не идет, значит диод закрыт. Таким образом, диод может находиться в одном из двух устойчивых состояний: или открыт или закрыт.

Включив диод в цепь источника постоянного напряжения, анодом к плюсовой клемме, а катодом — к минусовой, получим смещение p-n-перехода в прямом направлении. И если напряжение источника окажется достаточным (для кремниевого диода хватит 0,7 вольт), то диод откроется и начнет проводить ток. Величина этого тока будет зависеть от величины приложенного напряжения и от внутреннего сопротивления диода.

Видео (кликните для воспроизведения).

Почему диод перешел в проводящее состояние? Потому что при правильном включении диода, электроны из n-области, под действием ЭДС источника, устремились к его положительному электроду, навстречу дыркам из p-области, которые теперь движутся в сторону отрицательного электрода источника, навстречу электронам.

На границе областей (на самом p-n-переходе) в это время происходит рекомбинация электронов и дырок, их взаимное поглощение. А источник вынужден непрерывно поставлять новые электроны и дырки в область p-n-перехода, увеличивая их концентрацию.

А что случится если диод включить наоборот, катодом к плюсовой клемме источника, а анодом — к минусовой?Дырки и электроны разбегутся в разные стороны — к выводам — от перехода, и в окрестности перехода возникнет зона обедненная носителями заряда — потенциальный барьер. Ток обусловленный основными носителями заряда (электронами и дырками) попросту не возникнет.

Читайте так же:  Как подписывается заявление на увольнение

Но кристалл диода не идеален, в нем кроме основных носителей заряда присутствуют еще и неосновные носители заряда, которые и создадут очень незначительный обратный ток диода, измеряемый микроамперами. Но диод в данном состоянии закрыт, так как p-n-переход его смещен в обратном направлении.

Напряжение, при котором диод переходит из закрытого состояния в открытое, называется прямым напряжением диода (смотрите — Основные параметры диодов), которое по сути является падением напряжения на p-n-переходе. Сопротивление диода току в прямом направлении не постоянно, оно зависит от величины тока через диод и имеет размер порядка единиц Ом. Напряжение обратной полярности, при котором диод закрывается, называется обратным напряжением диода. Обратное сопротивление диода в этом состоянии измеряется тысячами Ом.

Очевидно, диод может переходить из открытого состояния в закрытое и обратно при смене полярности приложенного к нему напряжения. На данном свойстве диода основана работа выпрямителя. Так, в цепи синусоидального переменного тока диод будет проводить ток лишь во время положительной полуволны, а во время отрицательной — будет заперт.

Источник: http://electricalschool.info/electronica/2181-ustroystvo-i-princip-raboty-dioda.html

Устройство и принцип работы светодиода

В лампах накаливания свет получается от раскаленной до бела вольфрамовой нити, по сути — от тепла. Словно раскаленные угли в печи, подогреваемой тепловым действием электрического тока, когда электроны быстро-быстро колеблются и сталкиваются с узлами кристаллической решетки проводящего металла, при этом излучают видимый свет, на который приходится, однако, всего менее 15 % всей затрачиваемой электрической энергии, питающей лампу.

Светодиоды, в отличие от ламп накаливания, излучают свет вовсе не за счет тепла, а благодаря особенности своей конструкции, принципиально нацеленной на то, чтобы энергия тока шла именно на испускание света, причем определенной длины волны. В результате КПД светодиода, как источника света, превышает 50%.

Ток здесь проходит через p-n-переход, при этом на переходе происходит рекомбинация электронов и дырок с излучением фотонов (квантов) видимого света с определенной частотой, а значит — с определенным цветом.

Любой светодиод принципиально устроен следующим образом. Во-первых, как отмечалось выше, здесь присутствует электронно-дырочный переход, состоящий из контактирующих друг с другом полупроводников p-типа (основные носители тока — дырки) и n-типа (основные носители тока — электроны).

Когда в прямом направлении через этот переход пропускается ток, то в месте контакта полупроводников двух противоположных типов происходит переход заряда (носители заряда перескакивают между энергетическими уровнями) из области с одним типом проводимости — в область с другим типом проводимости.

При этом электроны со своим отрицательным зарядом соединяются с ионами положительно заряженных дырок. В этот то момент и рождаются фотоны света, частота которых пропорциональна разности энергетических уровней атомов (высоте потенциального барьера) между веществами с двух сторон от перехода.

Конструктивно светодиоды бывают различных форм. Наиболее простая форма — пятимиллиметровый корпус — линза. Такие светодиоды часто можно встретить в качестве индикаторных на различной бытовой технике. Сверху корпус светодиода имеет форму линзы. Снизу внутри корпуса установлен параболический рефлектор (отражатель).

На рефлекторе находится кристалл, который излучает свет в месте прохождения тока через p-n-переход. От катода — к аноду, с рефлектора — в сторону тонкой проволочки электроны движутся через кубик — кристалл.

Этот полупроводниковый кристалл — главный элемент светодиода. Здесь он имеет размер 0,3 на 0,3 на 0,25 мм. Кристалл соединяется с анодом перемычкой из тонкой проволоки. Полимерный корпус представляет собой одновременно прозрачную линзу, которая фокусирует свет в определенном направлении, при этом получается ограниченный угол расхождения светового пучка.

На сегодняшний день доступны светодиоды всех цветов радуги, начиная от ультрафиолетового и белого, заканчивая красным и инфракрасным. Наиболее распространены: красный, оранжевый, желтый, зеленый, синий и белый цвета светодиодов. И цвет свечения здесь определяется отнюдь не цветом корпуса!

Цвет зависит от длины волны фотонов, излучаемых на p-n-переходе. Например красный цвет красного светодиода имеет характерную длину волны от 610 до 760 нм. Длина волны, в свою очередь, зависит от материала, который использовался в производстве конкретного полупроводника для данного светодиода. Так, для получения цвета от красного до желтого, применяют примеси алюминия, индия, галлия и фосфора.

Для получения цветов от зеленого до голубого — азот, галлий, индий. Для получения белого цвета, к кристаллу добавляют специальный люминофор, который преобразует синий цвет в белый при помощи явления фотолюминесценции.

Источник: http://electricalschool.info/electronica/2213-ustroystvo-i-princip-raboty-svetodioda.html

Лампочка светодиодная. Принцип работы и преимущества

Одной из основных причин, почему на правительственном уровне было обращено внимание на необходимость замены ламп накаливания светодиодными, является экономия электроэнергии. Но это не единственное их достоинство.

Читайте так же:  Начисление отпусков за счет резервов

Преимущества светодиодов

Лампочка светодиодная создана по другой технологии. Она вырабатывает свет, близкий к дневному. Это обеспечивает больший комфорт для глаз человека. Помимо удобства, также важна и экономия. Потребление электроэнергии в светодиодных лампах практически в 10 раз меньше, чем в обычных. Кроме того, они более долговечны.

Такие осветительные приборы предпочтительнее устанавливать в охраняемых помещениях, так как они не создают помех для камер ночного видения и других устройств.

Немаловажно и то, что лампочка светодиодная практически не греется. Благодаря этому у нее отсутствует тепловое излучение, и она является пожаробезопасной. К достоинствам можно отнести и то, что такие осветительные приспособления не требуют специальной утилизации.

Классификация

Сейчас производители выпускают разные светодиодные лампочки для дома. Они различаются по форме, способу вкручивания и мощности. Так, в продаже можно найти варианты с обычным цоколем, заменители для галогенных или люминесцентных ламп.

Каждая лампочка светодиодная должна проработать не менее 40-50 тыс. часов. В пересчете это получится 6 лет непрерывного освещения. При условии, что она будет работать около 8 часов, ее может хватить более чем на 15 лет. Преимущества становятся очевидными, если учесть тот факт, что привычные лампы накаливания рассчитаны на 1 тыс. часов работы, а люминесцентные – не более чем на 15 тыс.

Производители предлагают как обычные варианты для дома, рассчитанные на напряжение 220 вольт, так и автомобильные экземпляры, для которых достаточно двенадцати. Практически все изготовители дают на свою продукцию двухлетнюю гарантию.

Принцип работы

Это достигается благодаря специальной технологии производства светодиодов. Они состоят из нескольких прослоек, в которые входит сапфировая подложка, буферный Gan, токопроводящий n-GaN, активный InGaN, еще один токопроводящий p-GaN слои. Также в каждый светодиод включен анод и катод. Активная часть состоит из тонких слоев полупроводников n- и p-типов. Это все позволяет преобразовывать электроны в фотоны. Правда, достигнуть 100% конверсии не под силу даже этой технологии.

Но для получения белого света необходимо его преобразование из других спектров, а это влечет за собой повышение себестоимости. Конечно, такие светодиодные лампочки для дома достаточно дороги. Но если высчитать себестоимость часа работы, то окажется, что они в разы экономичнее привычных ламп накаливания.

Источник: http://www.syl.ru/article/170954/new_lampochka-svetodiodnaya-printsip-rabotyi-i-preimuschestva

Устройство и принцип работы светодиодов

С момента открытия красного светодиода (1962 г.) развитие твердотельных источников света не останавливалось ни на миг. Каждое десятилетие отмечалось научными достижениями и открывало для ученых новые горизонты. В 1993 году, когда японским ученым удалось получить синий свет, а затем и белый, развитие светодиодов перешло на новый уровень. Перед физиками всего мира стала новая задача, суть которой заключалась в использовании светодиодного освещения в качестве основного.

В наше время можно сделать первые выводы, свидетельствующие об успехах становления светодиодного освещения и продолжающейся модернизации светодиода. На прилавках магазинов появились светильники со светодиодами, изготовленными по технологии COB, COG, SMD, filament.

Как устроен каждый из перечисленных видов, и какие физические процессы вынуждают полупроводниковый кристалл светиться?

Что такое светодиод?

Перед разбором устройства и принципа работы, кратко рассмотрим, что светодиод из себя представляет.

Светодиод – это полупроводниковый компонент с электронно-дырочным переходом, создающий оптическое излучение при пропускании электрического тока в прямом направлении.

В отличие от нити накала и люминесцентных источников света, испускаемый свет светодиодом лежит в небольшом диапазоне спектра. То есть кристалл светоизлучающего диода испускает конкретный цвет (в случае со светодиодами видимого спектра). Для получения определенного спектра излучения в светодиодах используют специальный химический состав полупроводников и люминофора.

Устройство, конструкция и технологические отличия

Существует много признаков, по которым можно классифицировать светодиоды на группы. Одним из них является технологическое отличие и небольшое различие в устройстве, которое вызвано особенностью электрических параметров и будущей сферой применения светодиода.

Цилиндрический корпус из эпоксидной смолы с двумя выводами стал первым конструктивом для светоизлучающего кристалла. Закругленный цветной или прозрачный цилиндр служит линзой, формируя направленный пучок света. Выводы вставляются в отверстия печатной платы (DIP) и с помощью пайки обеспечивают электрический контакт.

Излучающий кристалл располагается на катоде, который имеет форму флажка, и соединяется с анодом тончайшим проводом. Существуют модели с двумя и тремя кристаллами разного цвета в одном корпусе с количеством выводов от двух до четырёх. Кроме этого, внутри корпуса может быть встроен микрочип, управляющий очередностью свечения кристаллов либо задающий чистоту его мигания.

В попытках нарастить световой поток, появился аналог с усовершенствованным устройством в DIP корпусе с четырьмя выводами, известный как «пиранья». Однако увеличенная светоотдача нивелировалась размерами светодиода и сильным нагревом кристалла, что ограничило область применения «пираньи». А с появлением SMD технологии их производство практически прекратилось.

Читайте так же:  Справка о восстановлении на работе

[/stextbox]

Полупроводниковые приборы с креплением на поверхность печатной платы коренным образом отличаются от предшественников. Их появление расширило возможности конструирования систем освещения, позволило снизить габариты светильника и полностью автоматизировать монтаж. Сегодня SMD-светодиод – это самый востребованный компонент, используемый для построения источников света любых форматов.

Основа корпуса, на которую крепится кристалл, является хорошим проводником тепла, что в разы улучшило отвод тепла от светоизлучающего кристалла. В устройстве белых светодиодов между полупроводником и линзой присутствует слой люминофора для задания нужной цветовой температуры и нейтрализации ультрафиолета. В SMD-компонентах с широким углом излучения линза отсутствует, а сам светодиод имеет форму параллелепипеда.

Chip-On-Board – одно из новейших практических достижений, которое в ближайшем будущем займет лидерство по производству белых светодиодов в искусственном освещении. Отличительная черта устройства светодиодов по технологии COB заключается в следующем: на алюминиевую основу (подложку) через диэлектрический клей крепят десятки кристаллов без корпуса и подложки, а затем полученную матрицу покрывают общим слоем люминофора. В результате получается источник света с равномерным распределением светового потока, исключающий появление теней.

Разновидностью COB является Chip-On-Glass (COG), которая подразумевает размещение множества мелких кристаллов на поверхности из стекла. В частности, широко известны филаментные лампы на 220 В, в которых излучающим элементом служит стеклянный стержень со светодиодами, покрытыми люминофором.

Принцип работы светодиода

Несмотря на рассмотренные технологические особенности, работа всех светодиодов базируется на общем принципе действия излучающего элемента. Преобразование электрического тока в световой поток происходит в кристалле, который состоит из полупроводников с разным типом проводимости. Материал с n­-проводимостью получают путем его легирования электронами, а материал с p-проводимостью – дырками. Таким образом, в сопредельных слоях создаются дополнительные носители заряда противоположной направленности.

Каждый отдельно взятый светодиод излучает довольно слабый свет. Поэтому для достижения нужного светового эффекта, группируется необходимое количество элементов. С этой целью используется плата, изготовленная из диэлектрического материала, с нанесенными токопроводящими дорожками. Примерно такие же платы применяются в других электронных устройствах.

[/stextbox]

Светодиодная плата является еще и понижающим трансформатором. С этой целью все элементы включаются последовательно в общую цепь, и сетевое напряжение равномерно распределяется между ними. Единственным существенным недостатком такой схемы является обрыв всей цепочки в случае перегорания хотя-бы одного светодиода.

Защиту всей лампы от попадания влаги, пыли и других негативных воздействий обеспечивает прозрачный колпак. Некоторые свойства колпака позволяют усилить общее свечение. Дело в том что его внутренняя сторона покрыта слоем люминофора, который начинает светиться под действием энергии квантов. Поэтому снаружи поверхность колпака выглядит матовой. Люминофор обладает более широкий спектр излучения, в несколько раз превышающий аналогичный показатель у светодиодов. В результате, излучение становится сравнимо с естественным солнечным светом. Без такого покрытия светодиоды оказывают раздражающее действие на глаза, вызывая усталость и болевые ощущения.

Лучше всего изучать полезные качества, устройство и принцип действия светодиодных ламп на схемах при напряжении электрической сети 220 вольт. Чаще всего такие светильники применяются в промышленном и уличном освещении, а в бытовых условиях традиционные источники света заменяются светодиодными лампочками, работающими при низком напряжении, в основном от 12 вольт. Однако мощность лампы и ее светоотдача не имеют прямой зависимости между собой. Этот фактор следует учитывать при выборе светодиодных светильников.

В светодиодных лампах, рассчитанных на 220 вольт, в схеме отсутствует трансформатор. В связи с этим возникает дополнительная экономия при эксплуатации таких светильников. Данная особенность отличает их от светодиодных ламп с другими мощностями. Поэтому выбор светильников происходит не по мощности, а по степени освещенности, создаваемой ими.

Преимущества светодиодных ламп

В настоящее время большое значение придается экономичной и долговечной работе осветительных приборов. Поэтому на первый план выходят светильники, создающие яркое освещение с выделением минимального количества тепла и небольшим энергопотреблением. Они обладают низкой чувствительностью к перепадам тока и напряжения, могут выдерживать большое количество включений и выключений.

Всеми этими качествами в полной мере обладают светодиодные лампы. Они имеют несколько разновидностей, отличающихся по конструктивным и техническим характеристикам, что позволяет выбрать наиболее подходящий вариант. Все лампы отличаются наличием или отсутствием мерцания, степенью экологической безопасности, необходимостью в использовании выпрямителей тока и других дополнительных приборов.

Видео (кликните для воспроизведения).

Источник: http://electric-220.ru/news/ustrojstvo_i_princip_raboty_svetodiodnoj_lampy/2017-02-12-1178

Светодиодных устройств принцип работы
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here