Светодиодная лампа устройство и принцип работы

Устройство и принцип работы светодиода

В лампах накаливания свет получается от раскаленной до бела вольфрамовой нити, по сути — от тепла. Словно раскаленные угли в печи, подогреваемой тепловым действием электрического тока, когда электроны быстро-быстро колеблются и сталкиваются с узлами кристаллической решетки проводящего металла, при этом излучают видимый свет, на который приходится, однако, всего менее 15 % всей затрачиваемой электрической энергии, питающей лампу.

Светодиоды, в отличие от ламп накаливания, излучают свет вовсе не за счет тепла, а благодаря особенности своей конструкции, принципиально нацеленной на то, чтобы энергия тока шла именно на испускание света, причем определенной длины волны. В результате КПД светодиода, как источника света, превышает 50%.

Ток здесь проходит через p-n-переход, при этом на переходе происходит рекомбинация электронов и дырок с излучением фотонов (квантов) видимого света с определенной частотой, а значит — с определенным цветом.

Любой светодиод принципиально устроен следующим образом. Во-первых, как отмечалось выше, здесь присутствует электронно-дырочный переход, состоящий из контактирующих друг с другом полупроводников p-типа (основные носители тока — дырки) и n-типа (основные носители тока — электроны).

Когда в прямом направлении через этот переход пропускается ток, то в месте контакта полупроводников двух противоположных типов происходит переход заряда (носители заряда перескакивают между энергетическими уровнями) из области с одним типом проводимости — в область с другим типом проводимости.

При этом электроны со своим отрицательным зарядом соединяются с ионами положительно заряженных дырок. В этот то момент и рождаются фотоны света, частота которых пропорциональна разности энергетических уровней атомов (высоте потенциального барьера) между веществами с двух сторон от перехода.

Конструктивно светодиоды бывают различных форм. Наиболее простая форма — пятимиллиметровый корпус — линза. Такие светодиоды часто можно встретить в качестве индикаторных на различной бытовой технике. Сверху корпус светодиода имеет форму линзы. Снизу внутри корпуса установлен параболический рефлектор (отражатель).

На рефлекторе находится кристалл, который излучает свет в месте прохождения тока через p-n-переход. От катода — к аноду, с рефлектора — в сторону тонкой проволочки электроны движутся через кубик — кристалл.

Этот полупроводниковый кристалл — главный элемент светодиода. Здесь он имеет размер 0,3 на 0,3 на 0,25 мм. Кристалл соединяется с анодом перемычкой из тонкой проволоки. Полимерный корпус представляет собой одновременно прозрачную линзу, которая фокусирует свет в определенном направлении, при этом получается ограниченный угол расхождения светового пучка.

На сегодняшний день доступны светодиоды всех цветов радуги, начиная от ультрафиолетового и белого, заканчивая красным и инфракрасным. Наиболее распространены: красный, оранжевый, желтый, зеленый, синий и белый цвета светодиодов. И цвет свечения здесь определяется отнюдь не цветом корпуса!

Цвет зависит от длины волны фотонов, излучаемых на p-n-переходе. Например красный цвет красного светодиода имеет характерную длину волны от 610 до 760 нм. Длина волны, в свою очередь, зависит от материала, который использовался в производстве конкретного полупроводника для данного светодиода. Так, для получения цвета от красного до желтого, применяют примеси алюминия, индия, галлия и фосфора.

Для получения цветов от зеленого до голубого — азот, галлий, индий. Для получения белого цвета, к кристаллу добавляют специальный люминофор, который преобразует синий цвет в белый при помощи явления фотолюминесценции.

Источник: http://electricalschool.info/electronica/2213-ustroystvo-i-princip-raboty-svetodioda.html

Где используются светодиоды, области применения

Мощные светодиоды на практике применяются во множестве сфер, начиная от освещения жилых, производственных, офисных помещений и заканчивая архитектурной и даже уличной подсветкой.

Примечательно, что за последние несколько лет область применения светодиодов значительно расширилась. И если раньше они ассоциировались с индикаторами в электронных приборах, то сейчас, где их только нет: дорожные знаки, светофоры, индикация в салоне машин. В автомобильной промышленности без них уже не обойтись, они активно внедряются в сигналы торможения и габаритные фонари.

Такое широкое применение светодиодов объясняется прогрессом в технологиях разработки мощных диодов. Стоит заметить, что с каждым годом они все увереннее вытесняют другие, более привычные, но устаревшие источники домашнего и уличного света (лампы накаливания, галогенные лампы, компактные люминесцентные лампы).

Перечислять все сферы, где их применяют можно очень долго: освещение рабочих мест на промышленных и производственных предприятиях, подъездов и коридоров в домах, прилавков и витрин в магазинах и бутиках.

Те светодиоды, которые используют в качестве подсветки, являются мощными, то есть по многим параметрам (световой поток, надежность, индекс цветопередачи, световая отдача) совершенно не уступают, а в некоторых случаях даже превосходят привычные источники света, применяемые в осветительных приборах.

В сравнении с лампами их главные преимущества: срок службы в режиме номинальном около 50000 часов, а также направленное излучение. В светодиодах нет ртути, как в разрядных или люминесцентных лампочках, что в разы облегчает существующую ныне проблему с утилизацией.

Читайте так же:  Заявление на алименты в мировой

Время выхода на максимальное значение излучаемого светового потока сразу после включения составляет всего долю секунды, и вы сможете подобрать освещение любого оттенка, начиная с приятного теплого (как лампа накаливания) и заканчивая белым дневным и голубым холодным.

Применение светодиодов в роли источников света дает возможность значительно уменьшить все расходы электроэнергии. Именно поэтому необходимо рассматривать два главных фактора, где их преимущества применения светодиодных ламп наиболее существенны: отсутствие обслуживания и экономия электроэнергии.

Пример использования светодиодов в светильниках для уличного, промышленного и офисного освещения — светодиодные светильники Ledel. При использовании нового альтернативного вида освещения вместо старых ламп накаливания, экономия составляет около 95%, а вместо люминесцентных ламп – 50%.

В нашей стране время от времени предпринимаются попытки полного перевода всего города или определенного здания, района на полупроводникое освещение. И это имеет смысл, поскольку светодиодиодные лампы – это наиболее мощные и экономически выгодные источники света на сегодняшний день.

Примеры использования светодиодов:

Источник: http://electrik.info/main/lighting/783-svetodiody-i-ih-primenenie.html

Схема светодиодной лампы: устройство простейших драйверов

Светодиодные источники света быстро завоевывают популярность и вытесняют неэкономичные лампы накаливания и опасные люминесцентные аналоги. Они эффективно расходуют энергию, долго служат, а некоторые из них после выхода из строя подлежат ремонту.

Чтобы правильно произвести замену или починку сломанного элемента, потребуется схема светодиодной лампы и знание конструкционных особенностей. А эту информацию мы в деталях рассмотрели в нашей статье, уделив внимание разновидностям ламп и их конструкции. Также мы привели кратких обзор устройства самых популярных led моделей от известных производителей.

Как устроена светодиодная лампа?

Близкое знакомство с конструкцией LED-светильника может потребоваться только в одном случае – если необходимо отремонтировать или усовершенствовать источник света.

Домашние умельцы, имея на руках комплект элементов, могут самостоятельно собрать лампу на светодиодах, но новичку это не по силам.

Зато, изучив схему и имея элементарные навыки работы с электроникой, даже новичок сможет разобрать лампу, заменить сломанные детали, восстановив функциональность прибора. Чтобы ознакомиться с подробными инструкциями по выявлению поломки и самостоятельному ремонту светодиодной лампы, переходите, пожалуйста, по этой ссылке.

Имеет ли смысл ремонт LED-лампы? Безусловно. В отличие от аналогов с нитью накаливания по 10 рублей за штуку, светодиодные устройства стоят дорого.

Предположим, «груша» GAUSS – около 80 рублей, а более качественная альтернатива OSRAM – 120 рублей. Замена конденсатора, резистора или диода обойдется дешевле, да и срок службы лампы своевременной заменой можно продлить.

Существует множество модификаций LED-ламп: свечи, груши, шары, софиты, капсулы, ленты и др. Они отличаются формой, размером и конструкцией. Чтобы наглядно увидеть отличие от лампы накаливания, рассмотрим распространенную модель в форме груши.

Если отвлечься от привычной формы, можно заметить только один знакомый элемент – цоколь. Размерный ряд цоколей остался прежним, поэтому они подходят к традиционным патронам и не требуют смены электросистемы. Но на этом сходство заканчивается: внутреннее устройство светодиодных приборов намного сложнее, чем у ламп накаливания.

LED-лампы не предназначены для работы напрямую от сети 220 В, поэтому внутри устройства заключен драйвер, являющийся одновременно блоком питания и управления. Он состоит из множества мелких элементов, основная задача которых – выпрямить ток и снизить напряжение.

Разновидности схем и их особенности

Чтобы создать оптимальное напряжение для работы устройства на диодах, драйвер собирают на основе схемы с конденсатором или понижающим трансформатором. Первый вариант – более дешевый, второй применяют для оснащения мощных ламп.

Существует и третья разновидность – инверторные схемы, которые реализуют или для сборки диммируемых ламп, или для устройств с большим числом диодов.

Вариант #1 — с конденсаторами для снижения напряжения

Рассмотрим пример с участием конденсатора, так как подобные схемы являются распространенными в бытовых лампах.

Конденсатор C1 защищает от помех электросети, а C4 сглаживает пульсации. В момент подачи тока два резистора – R2 и R3 – ограничивают его и одновременно предохраняют от короткого замыкания, а элемент VD1 преобразует переменное напряжение.

Когда прекращается подача тока, конденсатор разряжается при помощи резистора R4. К слову, R2, R3 и R4 используются далеко не всеми производителями светодиодной продукции.

Для проверки конденсатора довольно часто используют мультиметр.

Минусы схемы с конденсаторами:

  1. Возможно перегорание диодов, так как стабильности подачи тока не наблюдается. Напряжение на нагрузке полностью зависит от напряжения питания.
  2. Отсутствует гальваническая развязка, поэтому существует риск удара током. Не рекомендуется во время разборки ламп прикасаться к токоведущим элементам, так как они находятся под фазой.
  3. Практически невозможно достичь высоких токов свечения, потому что для этого потребуется увеличение емкостей конденсаторов.

Однако преимуществ также немало, именно благодаря им конденсаторы остаются популярными. Плюсами являются простота сборки, широкий диапазон напряжений на выходе и невысокая стоимость.

Можно смело экспериментировать с самостоятельным изготовлением, тем более, часть деталей отыщется в старых приемниках или телевизорах.

Вариант #2 — с импульсным драйвером

В отличие от линейного драйвера с конденсатором, импульсный эффективно защищает светодиоды от перепадов напряжения и помех в сети.

Примером импульсного устройства служит популярная электронная модель CPC9909. Рассмотрим подробнее ее особенности. Эффективность ее использования достигает 98% — показателя, при котором действительно можно говорить об энергосбережении и экономии.

Читайте так же:  Устройство работы реактивного двигателя

Питание устройства может происходить напрямую от высокого напряжения – до 550 В, так как драйвер оснащен встроенным стабилизатором. Благодаря этому же стабилизатору схема стала проще, а стоимость – ниже.

Микросхему успешно используют для разработки электросетей аварийного и резервного освещения, так как она подходит для схем повышающих преобразователей.

В домашних условиях на базе CPC9909 чаще всего собирают светильники с питанием от батарей или драйверы с мощностью, не превышающей 25 В.

Вариант #3 — с диммируемым драйвером

Регулировка яркости свечения осветительных приборов позволяет установить в помещении нужный уровень освещения. Это удобно при создании отдельных зон, снижении яркости света в дневное время или для подчеркивания предметов интерьера.

С помощью диммера использование электроэнергии становится более рациональным, а ресурс службы электроприбора увеличивается.

Существует два вида диммируемых драйверов, каждый из которых обладает своими преимуществами. Первые работают с ШИМ-управлением.

Их устанавливают между лампой и блоком питания. Энергия подается в виде импульсов разной длительности. Пример использования драйвера с ШИМ-регулировкой – бегущая строка.

Диммируемые драйверы второго вида воздействуют непосредственно на источник питания и применяются для устройств со стабилизированным током.

При регулировании тока может происходить изменение оттенка свечения: диоды белого цвета при уменьшении тока начинают излучать слегка желтый свет, а при увеличении – синий.

Краткий обзор и тестирование популярных LED-ламп

Хотя принципы построения схем драйверов различных осветительных устройств похожи, между ними имеются отличия и в последовательности подключения элементов, и в их выборе.

Рассмотрим схемы 4 ламп, которые продаются в свободном доступе. При желании их можно отремонтировать своими руками.

Источник: http://sovet-ingenera.com/elektrika/svetylnik/sxema-svetodiodnoj-lampy.html

Устройство светодиодных ламп на 220в и типы диодов

Устройство светодиодных ламп на 220в во многих случаях варьируется в зависимости от конструктивных особенностей, заложенных производителем.

Тем не менее, знание основных видов устройства позволяет самостоятельно определить причину неисправности осветительного прибора, а также выполнить некоторые несложные ремонтные работы своими руками.

Типы светодиодов

Рассмотрим, какие светодиоды используются в лампах. В настоящее время существует огромное количество подвидов и групп, которые являются типами светодиодных осветительных приборов, но к самым основным видам относятся следующие:

  • Слаботочный сверх яркий источник и smd-светодиод. Такие варианты очень часто используются в качестве индикаторов. Светодиод может быть собран на одном кристалле без использования линзы или на нескольких кристаллах с применением общей линзы.
  • COB-модуль квадратного или линейного исполнения с белым свечением, что делает такой тип популярным в прожекторах и фонарях, используемых в уличном освещении.
  • Filаmеnt – стержневой вариант, достигающий в длину четверти метра и состоящий их очень большого количества кристаллов. Филаментный тип особенно популярен в производстве нитевидных светильников на 220В.
  • Дисплейного типа OLED-светодиоды, отличающиеся очень характерным тонкопленочным и органическим строением.

Не менее популярны светодиоды, которые используются в изготовлении ДУ-пульта, а также ламп медицинского или косметического назначения.

Способы сборки

На сегодняшний день практикуется несколько способов сборки осветительных элементов, благодаря чему создана определенная классификация современных светодиодов.

Вариант Duаl In-line Расkаgе – интересный, с точки зрения конструкции, но устаревающий вид, характеризующийся следующими размерами светодиодов:

Помимо размеров колбы, полупроводники заметно отличаются цветом и материалами, которые используются для изготовления, а также формой чипа. К числу основных достоинств такого типа светодиодов относятся незначительный нагрев и достойная яркость свечения.

«Пиранья»

Светодиоды, относящиеся к этой группе, характеризуются наилучшими световыми качествами по показателям светового потока. Конструктивная особенность представлена прямоугольной формой и наличием четырёх специальных пин-выводов. Выпускаются в красном, зеленом, синем и белом цвете.

Одним из основных отличий является возможность более «жесткой» фиксации на плате, а очень высокая тепловая проводимость обусловлена свинцовой подложкой.

Светодиодная лампа Пиранья Хамелеон (RGB)

Наличие свинца ставит под сомнение безопасность эксплуатации, но широкий диапазон рабочего температурного режима позволяет использовать высокие входные мощности, чем и обуславливается широкая популярность.

SMD-технология

SMD-светодиоды, известные также под названием Surfасе Моunting Dеviсе или «устройство, фиксируемое на поверхности», обладают мощностью на уровне 0,01-0,2Вт.

Особенностью SMD-светодиодов является наличие одного, двух или трёх современных кристаллов на керамических прямоугольных основах.

SMD-светодиоды покрываются индивидуально качественным слоем люминофора. Площадки с контактами и основа монтажной платы напрямую соединяются при помощи стандартного припоя.

COB-технология

Современная технология изготовления светодиодных ламп под названием Сhiр Оn Воаrd, характеризуется фиксацией кристаллов на плате без корпуса и керамической подложи, и покрытие общим люминофором. Главным достоинством любых COB-осветителей является минимальная площадь свечения при повышенных показателях мощности.

Светодиодная лампа типа COB

Большая плотность размещения и наличие общего покрытия слоем люминофора, гарантирует наиболее равномерное свечение осветительного прибора.

Среди экономичных ламп сначала широко применялись люминесцентные, но сейчас все больше предпочтение отдается светодиодным лампам. Как подключить светодиодные лампы вместо люминесцентных – эта информация будет полезна для тех, кто решил заменить лампочки.

О том, как выбрать и установить трансформатор для светодиодной ленты, читайте тут.

Виды и способы подключения диммера для светодиодных ламп описаны по ссылке.

Читайте так же:  Прекращение выплаты алиментов по достижении 18 лет

Устройство лампы на светодиодах

Видео (кликните для воспроизведения).

В зависимости от назначения осветительного прибора и особенностей производственных линий фирмы-производителя, устройство светодиодной лампочки может иметь некоторые, достаточно ощутимые отличия, которые следует учитывать при выборе.

Устройство светодиодной лампы LED

Фирменные изделия

Конструкционными особенностями LED-ламп на 220В, которые выпускаются производителями с мировой известностью, является наличие следующих обязательных составляющих:

  • светорассеивающей полусферы;
  • чипов;
  • алюминиевой печатной платы с пастой достаточной теплопроводности, что позволяет регулировать работоспособность чипов;
  • радиаторов на основе анодированного сплава алюминия;
  • драйвера, имеющего схему гальванически развязанного модулятора;
  • полимерного основания цоколя в виде полиэтилентерефталат;
  • цокольной части, имеющей никелевое покрытие.

Следует отметить, что драйвер обладает повышенной плотностью монтажа таких частей, как трансформатор импульсного типа, микросхемы и полярные конденсаторы, а также различные планарные элементы.

Низкокачественные китайские лампочки

Именно недостаточно высоким качеством и отсутствием целого ряда элементов, объясняется низкая стоимость светодиодных источников света, выпускаемых китайским производителем:
  • отсутствие радиатора;
  • отсутствие драйвера;
  • наличие простого питающего блока в виде неполярного конденсатора;
  • отсутствием надежной стабилизации выходного тока.

Питающей блок устанавливается в центральной части платы со световыми диодами. На одной стороне присутствует диодный мост и резисторы, а на другой – пара конденсаторов.

Процесс охлаждения в китайских источниках света осуществляется посредством точечных малоэффективных отверстий в корпусе, что и становится основной причиной частого перегорания кристаллов.

Светодиоды используются не только в стационарных приборах, но и в качестве автономных источников цвета. Светодиодный фонарь своими руками – рассмотрим порядок сборки конструкции.

Информация по изготовлению светодиодных светильников своими руками представлена тут.

Filаmеnt лампы

  • светодиодными стержнями;
  • стеклянной колбой;
  • металлической цокольной частью;
  • платой драйвера.

В качестве дополнения можно рассматривать наличие основания цокольной части.

Таким образом, светодиодный филамент можно рассматривать как прямоугольный или круглый стержень из стекла с миниатюрными светодиодными кристаллами.

Схема включения

Как показывает практика, несмотря на достаточно высокую стоимость, общее потребление электрической энергии полупроводниковыми осветительными приборами, ощутимо ниже, чем у стандартных лампочек накаливания, а средний срок эксплуатации напротив, больше примерно в пять раз.

Монтажная схема светодиодной лампы

Схема включения такого источника света очень проста. Светодиодная лампа работает в условиях подачи 220В, в результате преобразования драйвером до рабочих величин входного сигнала, вызывающего свечение.

Источник: http://proprovoda.ru/osveshhenie/lampy/svetodiod/ustrojstvo-svetodiodnyx-lamp-na-220v.html

Вся правда о регулировке яркости светодиодных ламп: диммеры, драйверы и теория

Регулировка яркости источников света применяется, для создания комфортной освещенности помещения или рабочего места. Регулировка яркости возможна устройство нескольких цепей, которые включаются отдельными выключателями. В таком случае вы получите ступенчатое изменение освещенности, а также отдельные светящиеся и выключенные лампы, что может вызвать неудобства.

Стильные и актуальные дизайнерские решения включают в себя плавную регулировку общей освещенности при условии свечения всех ламп. Это позволяет создать как интимную обстановку для отдыха, так и яркую для торжеств или работы с мелкими деталями.

Ранее, когда основными источниками света были лампы накаливания и точечные светильники с галогенными лампами проблем с регулировкой не возникало. Использовался обычный 220В диммер на симисторе (или тиристорах). Который обычно был в виде выключателя, с поворотной ручкой вместо клавиш.

С приходом энергосберегающих (компактных люминесцентных ламп), а потом и светодиодных такой подход стал невозможен. В последнее же время подавляющее большинство источников света – это светодиодные светильники и лампочки, а лампы накаливания запрещены для использования в осветительных целях во многих странах.

Занятно то, что на упаковке от отечественных ламп накаливания сейчас указывают что-то вроде: «Электрический теплоизлучатель».

В этой статье вы узнаете о принципе регулирования яркости светодиодов, а также о том, как это выглядит на практике.

Теория

Любой полупроводниковый диод – это электронный прибор, который пропускает ток в одном направлении. При этом протекание тока не имеет линейно зависимости от приложенного напряжения, скорее она напоминает ветвь параболы. Это значит, что когда вы к светодиоду приложите малое напряжение – ток протекать не будет.

Ток через него протечет только в том случае, когда напряжение на диоде превысит пороговое значение. Для обычных выпрямительных диодов оно лежит в пределах от 0.3В до 0.8В в зависимости от материала из которого сделан диод. Кремниевые диоды берут на себя около 0.7В, германиевые 0.3В. Диоды Шоттки порядка 0.3В.

Светодиод не стал исключением. Пороговое напряжение белого светодиода около 3В, вообще оно зависит от полупроводника из которого он сделан, от этого зависит и цвет его свечения. Так, на красном светодиоде напряжение около 1.7 В. При достижении этого напряжения начнет протекать ток, и светодиод начнет светиться. Ниже вы видите вольтамперную характеристику светодиода.

Яркость свечения светодиода зависит от силы тока через него. Это отражено на графике ниже.

Яркость идеального теоретического светодиода линейно зависит от тока, но в реальности дела несколько отличаются. Это связано с дифференциальным сопротивлением диода и его тепловыми потерями.

Светодиод – прибор, который питается током, а не напряжением. Соответственно, для регулировки его яркости нужно изменять силу тока.

Читайте так же:  Неустойка за неуплату алиментов

Разумеется, что сила тока зависит от приложенного напряжения, но как вы можете судить из первого графика, даже незначительное изменение напряжения влечет за собой несоизмеримое увеличение тока.

Поэтому регулирование яркости с помощью простого реостата – занятие бесполезное. В такой схеме, при уменьшении сопротивления реостата светодиод внезапно загорится, а после его яркость незначительно возрастет, далее, при чрезмерном приложенном напряжении, он начнет сильно греется и выйдет из строя.

Отсюда выходит задание: Регулировать ток при определенном значении напряжения с незначительным его изменением.

Способы регулирования яркости светодиодов: линейные «аналоговые» регуляторы

Первое что приходит в голову это использовать биполярный транзистор, ведь его выходной ток (коллектора) зависит от входного тока (базы), включенного по схеме общего коллектора. Мы уже рассматривали их работу в большой статье о биполярных транзисторах.

Вы изменяете ток базы изменяя падение напряжения на переходе эмиттер-база с помощью потенциометра R2, резисторы R1 и R3 нужны для ограничения тока при максимально открытом транзисторе рассчитываются исходя из формулы:

R=(Uпитания-Uпадения на светодиодах-Uпадения на транзисторе)/Iсвет.ном.

Эту схему я проверял, она неплохо регулирует ток через светодиоды и яркость свечения, но заметна некоторая ступенчатость на определенных положениях потенциометра, возможно это связано с тем, что потенциометр был логарифмическим, а возможно из-за того что любой pn-переход транзистора это тот же диод с такой же ВАХ.

Лучше для этой задачи подойдет схема стабилизатора тока на регулируемом стабилизаторе LM317, хотя её чаще применяют в роли стабилизатора напряжения.

Её можно и использовать для получения фиксированного тока при постоянном напряжении. Это особенно полезно при подключении светодиодов к бортовой сети автомобиля, где напряжение в сети при заглушенном двигателе около 11.7-12В, а при заведенном доходит до 14.7В, разница более чем в 10%. Также отлично работает и при питании от блока питания.

Расчёт выходного тока достаточно прост:

Получается достаточно компактное решение:

Этот способ не отличается высоким КПД, он зависит от разницы напряжений между входом стабилизатора и его выходом. Всё напряжение «сгорает» на LM-ке. Потери мощности здесь определяются по формуле:

Чтобы повысить эффективность работы регулятора, нужен кардинально другой подход – импульсный регулятор или ШИМ-регулятор.

Способы регулирования яркости: ШИМ-регулировка

ШИМ расшифровывается, как «широтно-импульсная модуляция». В её основе лежит включение и выключение питания нагрузки на высокой скорости. Таким образом, мы получаем изменение тока через светодиод, поскольку каждый раз на него подается полное напряжение, необходимое для его открытия. Он быстро включается и отключается на полную яркость, но из-за инерционности зрения мы этого не замечаем и это выглядит как снижение яркости.

При таком подходе источник света может выдавать пульсации, не рекомендуется использовать источники света с пульсациями более 10%. Подробные значения для каждого вида помещений описаны в СНИП-23-05-95 (или 2010).

Работа под пульсирующим светом вызывает повышенную утомляемость, головные боли, а также может вызвать стробоскопический эффект, когда вращающиеся детали кажутся неподвижными. Это недопустимо при работе на токарных станках, с дрелями и прочим.

Схем и вариантов исполнения ШИМ-регуляторов великое множество, поэтому все их перечислять бессмысленно. Простейший вариант – это собрать ШИМ-контроллер на базе микросхемы-таймера NE555. Это популярная микросхема. Ниже вы видите схему такого светодиодного диммера:

А вот фактически это одна и та же схема, разница в том, что здесь исключен силовой транзистор и она подходит для регулировки 1-2 маломощных светодиодов с током в пару десятков миллиампер. Также из неё исключен стабилизатор напряжения для 555-микросхемы.

Как регулировать яркость светодиодных ламп на 220В

Ответ на этот вопрос простой: обычные светодиодные лампы практически не регулируются – т.е. никак. Для этого продаются специальные диммируемые светодиодные лампы, об этом написано на упаковке или нарисован значок диммера.

Пожалуй, самый широкий модельный ряд диммируемых светодиодных ламп представлен у фирмы GAUSS – разных форм, исполнений и цоколей.

Почему нельзя диммировать светодиодные лампы 220В

Дело в том, что схема питания обычных светодиодных ламп построена либо на базе балластного (конденсаторного) блока питания. Либо на схеме простейшего импульсного понижающего преобразователя первого рода. 220В диммеры в свою очередь просто регулируют действующее значение напряжения.

Различают такие диммеры по фронту работы:

1. Диммеры срезающие передний фронт полуволны (leading edge). Именно такие схемы чаще всего встречаются в бытовых регуляторах. Вот график их выходного напряжения:

2. Диммеры срезающие задний фронт полуволны (Falling Edge). Различные источники утверждают, что такие регуляторы лучше работают как с обычными, так и с диммируемыми светодиодными лампами. Но встречаются они гораздо реже.

Обычные светодиодные лампы практически не будут изменять яркость с таким диммером, к тому же это может ускорить их выход из строя. Эффект такой же, как и в схеме с реостатом, приведенной в предыдущем разделе статьи.

Стоит отметить, что большинство дешевых регулируемых LED-ламп ведут себя точно также, как и обычные, а стоят дороже.

Регулировка яркости светодиодных ламп – рациональное решение 12В

Светодиодные лампы на 12В широко распространены в цоколях для точечных светильников, например G4, GX57, G5.3 и другие. Дело в том, что зачастую в этих лампах отсутствует схема питания как таковая. Хотя в некоторых установлен на входе диодный мост и фильтрующий конденсатор, но это не влияет на возможность регулирования.

Читайте так же:  Сокращение штата работников по соглашению сторон

Это значит, что можно регулировать такие лампочки с помощью ШИМ-регулятора.

Таким же образом, как и регулируют яркость LED-ленты. Простейший вариант регулятора, вот такой вот на проводках, в магазинах они обычно называются как: «12-24В диммер для светодиодной ленты».

Они выдерживают, в зависимости от модели, порядка 10 Ампер. Если вам нужно использовать в красивой форме, т.е. встроить вместо обычного выключателя, то в продаже можно найти такие сенсорные 12В диммеры, или варианты с вращающейся ручкой.

Вот пример использования такого решения:

Ранее применялись галогеновые лампы на 12В их питали от электронных трансформаторов, и это было отличным решением. 12 вольт – это безопасное напряжение. Чтобы запитать эти лампы на 12В электронный трансформатор не подойдет, нужен блок питания для светодиодных лент. В принципе, переделка освещения с галогеновых на светодиодные лампы в этом и заключается.

Заключение

Самым разумным решением регулирования яркости светодиодного освещения является использовании 12В ламп или светодиодных лент. При понижении яркости возможно мерцание света, для этого можно попробовать использовать другой драйвер, а если вы делаете шим-регулятор своими руками – увеличить частоту ШИМ.

Источник: http://electrik.info/main/praktika/1393-regulirovka-yarkosti-svetodiodnyh-lamp-dimmery.html

Умные лампы. Устройство и виды. Работа и применение

Умные лампы — это новый тренд в мире умных устройств. Это лампочки, которые снабжаются дополнительными сенсорами и модулями, в результате этого стандартная лампа превращается в перспективное устройство. Умные системы освещения на текущий момент времени предлагают людям гибкость в применении, безопасность, а также экономию в расходах на электроэнергию. Такие лампы, к примеру, можно запрограммировать на включение или выключение в определенное время. К тому же большинство ламп управляется под управлением iOS или Android со смартфона.

Сразу несколько компаний за последние годы стали позиционировать себя в качестве изготовителей умных лампочек: LG, Philips и ряд других. Они выпускают различные модели, которые характеризуются разными возможностями: изменение яркости, цвета, управление при помощи смартфона или пульта и так далее. «Умные лампы» постоянно совершенствуются, в них внедряются все новые полезные функции.

Устройство
«Умная лампа» представляет систему, которая включает в себя:
  • Осветительные приборы.
  • Электронные системы, которые управляют ими.
Осветительные компоненты могут быть разных видов:
  • Ксеноновые лампы.
  • Светодиодные лампы.
  • Флуоресцентные лампы и так далее.
Управляющие системы могут включать:
  • Приемники.
  • Микроконтроллеры.
  • Сенсоры и иные элементы, которые ответственны за поведение света.

Управляемые лампы отличаются от стандартных лампочек тем, что предоставляют огромные возможности по их контролю. Благодаря использованию беспроводных технологий можно управлять светом в доме из любого места. Для этого потребуется только ноутбук или иные мобильные устройства.

Самая обычная управляемая лампа включает:
  • Стандартный цоколь E27.
  • Ребристый алюминиевый корпус для лучшего теплоотведения и дополнительной жесткости.
  • Матовый колпак из оргстекла.
  • Внутри находятся светодиоды, плата контроллера, Bluetooth-модуль с антенной, трансформатор.

В зависимости от назначения и исполняемых функций в лампочку могут быть встроены и другие устройства, к примеру, микрофон и даже видеокамера.

Принцип действия
Подключение обычной «умной лампочки» не составляет труда:
  • Ее следует ввинтить в соответствующий цоколь, затем включить лампу. В обычном режиме она излучает теплый белый свет.
  • Для раскрытия всего потенциала и настройки будет нужно мобильное устройство на iOS или Andro >

  • Потребуется домашняя беспроводная сеть Wi-Fi.
  • У лампы имеется собственный IP-адрес, который управляется через шлюз. Его нужно подключить к беспроводной сети Wi-Fi.
  • Далее при помощи приложения для смартфонов, соединившись с устройством по Wi-Fi, можно выключить или включить свет, сделать его приглушенным, в том числе настроить пользовательские сцены и собственное расписание.

Нередко умные лампочки могут работать и без участия человека. Для этого в них встроены датчики движения или иные элементы. Они отслеживают появление человека в помещении или его уход из комнаты, реагируя включением или выключением света. Умный свет позволяет существенно уменьшить уровень потребления энергии, в том числе позволяет избавить человека от необходимости следить за освещением – работа осуществляется в автоматическом режиме.

Виды
Светодиодные «умные лампы» можно поделить на две разновидности:
  1. Те, которые реагируют на присутствие движения в помещении благодаря разным датчикам. Они включаются и выключаются при необходимости.
  2. Те, которыми можно управлять удаленно при помощи специального приложения и смартфона.

Их также можно разделить по функциональности:
  • Встроенный датчик освещенности.
  • Изменение цветовой температуры.
  • Регулирование яркости.
  • Обеспечение освещения при отсутствии электроэнергии. В лампочке имеется встроенный аккумулятор.
  • Освещение при помощи голосового управления. Так в умном гаджете реализована функция распознавания речи: при озвучивании кодовой фразы отключается или включается освещение и так далее.

Лампы могут быть самых разных форм: «шарики», «свечки», «груши» и обычной формы. Они могут быть выполнены с разными цоколями E27, E14 и другими.

Видео (кликните для воспроизведения).

Источник: http://electrosam.ru/glavnaja/jelektroobustrojstvo/osveshhenie/umnye-lampy/

Светодиодная лампа устройство и принцип работы
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here